

Question Paper - I Subject- Maths Std. – 12th

Marks: 70

Time : 3 Hrs

Section A

O.1 Select and write the correct answer. (i) If $p \lor q$ is true and $p \land q$ is false then which of the following is not true? c) $\sim p \vee \sim q$ a) $p \vee q$ b) $p \leftrightarrow q$ d) $q \lor \sim q$ (ii) The principal solution of $tanx = \sqrt{3}$ is b) $\frac{\pi}{6}$, $\frac{\pi}{6}$ c) $\frac{\pi}{3}$, $\frac{4\pi}{3}$ d) $\frac{\pi}{3}$, $\frac{2\pi}{3}$ a) $\frac{\pi}{6}$, $\frac{\pi}{6}$ The cosine of the angle between the planes 2x + 2y - 3z = 5 and x - 2y + 3z = 7 is (iii) b) $\frac{11}{\sqrt{248}}$ c) $\frac{11}{\sqrt{238}}$ d) $\frac{12}{\sqrt{248}}$ a) $\frac{6}{\sqrt{238}}$ (iv) The value of 'a' if the vectors $\overline{1} - 2\overline{j} + \overline{k}a\overline{1} - 5\overline{j} + \overline{3}kand 5\overline{1} - 9\overline{j} + \overline{4}kare$ coplanar is d)4 a) 1 b) 2 c) 3 (v) b) $\frac{x}{2y+1}$ c) $\frac{1}{x(2y-1)}$ d) $\frac{1}{x(1-2y)}$ a) $\frac{x}{2\nu-1}$ (vi)—The value of $\sqrt{16.1}$ is c) 4.0125 a)4.125 b) 4.25 d) 4.1 $\int_0^{\frac{\pi}{2}} x \cos x \, dx = -$ (vii) b) $\frac{\pi}{2} + 1$ c) $\frac{\pi}{2} - 1$ d) $\frac{\pi}{2} + 2$ $a)\frac{\pi}{2}$ The solution of the differential equation $e^{dx} = x$ is (viii) a)y = x log x + x + cb) $y = x \log x - x + c$ $c)y = \frac{1}{x} + c$ d) $y = x - x \log x + c$

Q.2 Answer the following.

- (i) Find the Polar co-ordinates of a point whose cartesian co-ordinates are $(-\sqrt{3}, 1)$
- (ii) Find the joint equation of two lines passing through the origin and having slopes 2 and -3.
- (iii) Find $\frac{dy}{dx}$ if $y = [acos^3x + bsin^3x]^3$
- (iv) Find the Order and degree of the differential equation

$$\sqrt{\left(\frac{dy}{dx}\right)^3} = \left(\frac{d^2y}{dx^2}\right)^{\frac{1}{2}}$$

16

4

Question Paper - I Subject- Maths Std. - 12th

Marks: 70

Section B

16

Time : 3 Hrs

- Attempt any Eight. Q.3 Write the negations of (a) Some natural numbers are not integers. (b) $\forall n \in N, n + 1 > 2$
- **Q.4** Solve the equations using Reduction method:
- x + y + z = 6; 3x y + 3z = 10; 5x + 5y 4z = 3Q.5 Show that $\tan^{-1}(\frac{1}{2}) + \tan^{-1}(\frac{2}{11}) = \tan^{-1}(\frac{3}{4})$
- **Q.6** Find 'k' if 2x + y = 0 is one of the lines given by $3x^2 + kxy + 2y^2 = 0$
- **Q.7** The Cartesian equation of a line is 3x + 1 = 6y 2 = 1 z. Find its vector equation.
- **Q.8** Find the general solution: $cos3x = \frac{1}{75}$
- Find the values of 'x' if $f(x) = 2x^3 15x^2 84x 7$ is a decreasing function. Q.9
- **Q.10** Evaluate: $\int \frac{dx}{1+3\sin^2 x}$
- Q.11 For the following probability distribution of X

Х	0	1	2	3	4		
P(X=x)	2k	5k	4k	3k	2k		
(1, 1) $(1, 1)$ $(1, 1)$ $D(X > D)$							

find (i)'k' (ii) $P(X \ge 2)s$

- **Q.12** Find the maximum volume of a right circular cylinder, if the sum of its radius and height is 6units.
- Q.13 Form a differential equation by eliminating the arbitrary constants A and B: $y = Ae^{4x} + Be^{-4x}$
- Q.14 A fair coin is tossed 6 times. Find the probability that it shows tail exactly 2 times.

Section C

Attempt any Eight.

- **Q.15** In $\triangle ABC$, a = 4, b = 5, c = 3, find the value of (a) $\sin \frac{A}{2}(b) \cos A$ and (c) $A(\triangle ABC)$
- **Q.16** Show that the lines $x^2 4xy + y^2 = 0$ and x + y = 10 contain the sides of an equilateral triangle. Find the area of the triangle.
- Q.17 Find the co-ordinates of the foot of the perpendicular drawn from the point (2,4, -1) on the line $\frac{x-1}{2} = \frac{y}{1} = \frac{z}{2}$
- Q.18 Prove using vector methods: "The medians of a triangle are concurrent".
- Q.19 Find the direction ratios of a vector perpendicular to the two lines having direction ratios -2,1,-1 and -3,-4,1.
- **Q.20** Find the vector equation of a plane passing through the points (2,3,1), (4, -5,3) and parallel to X-axis.

Q.21 If
$$x = a\cos^3 t$$
, $y = a\sin^3 t$, show that $\frac{dy}{dx} = -(\frac{y}{x})^{\frac{1}{3}}$

Q.22 Evaluate: $\int \frac{1}{3+2sinx+cosx} dx$

24

Question Paper - I Subject- Maths Std. – 12th

Marks: 70

Time : 3 Hrs

- Q.23 The slope of the tangent to the curve at any point is equal to y + 2x. Find the equation of the curve passing through the origin.
- **Q.24** A spherical snow ball is melting so that its volume is decreasing at the rate of 8cc/sec.Find the rate at which its radius is decreasing when it is 2cm.Also find the rate of change of surface area at that time.
- **Q.25** Let $X \sim B(n, p)$
 - (i) If n = 15, E(X) = 5, find 'p' and Var(X)

(ii) If E(X) = 9, Var(x) = 4.5 find n and p.

Q.26 Obtain the expected value and Variance of X for the following probability distribution.

$\mathbf{X} = \mathbf{x}$	0	1	2	3	4
P(X = x)	0.2	0.1	0.2	0.4	0.1

Section D

Attempt any five.

Q.27 Represent the following circuit in symbolic form and construct its input output table.

2 3

Find the inverse of the matrix $\begin{bmatrix} 1 & 1 & 5 \end{bmatrix}$ using Adjoint method. 2 4 7

Q.29 If $\bar{a}b\bar{c}$ are the position vectors of the points A, B,C w.r.t.origin and point C divides AB internally in the ratio of m:n,then prove that $\bar{c} = \frac{m\bar{b}+n\bar{a}}{m+n}$. Hence find the position vector of the

point C which divides AB,A(2,-1,3) and B(-5,2,-5) internally in the ratio of 3:2

- Q.30 Minimize z = 30x + 20y subject to $x + y \le 8, x + 4y \ge 12, 5x + 8y \ge 20, x, y \ge 0$
- Q.31 Prove: If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function x then y = f[g(x)] is a differentiable function of x and $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ Also, find $\frac{dy}{dx}$ if $y = \sin^2(x+3)$
- Q.32 Evaluate: $\int e^{3x} \sin 2x \, dx$
- Q.33 Prove: $\int_{-a}^{a} f(x) dx = 0$ if f is odd = $2 \int_{0}^{a} f(x) dx$ if f is even.
- Q.34 Find the area of the region in the first quadrant bounded by the circle $x^2 + y^2 = 4$,X-axis and the line $x = y\sqrt{3}$.

20